Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(3): 516-527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327868

RESUMO

De-oiled rice bran is a good source of high-quality protein; however, the current practice of desolventization at high temperature (110-120 °C) denatures the protein, making its extraction difficult and uneconomical. The present study aims to investigate the effect of low temperature desolventization of de-oiled rice bran (LTDRB) on extraction, yield, and purity of protein and its comparison with protein obtained from high temperature desolventized de-oiled rice bran (HTDRB). The optimal conditions for preparation of protein from LTDRB were: extraction pH 11.00, extraction duration 52 min, and extraction temperature 58 °C resulting in an extraction efficiency, yield, and purity of 54.0, 7.23, and 78.70%, respectively. The LTDRB showed a positive impact on the color, solubility, foaming capacity and stability of protein whereas the absorption and emulsification properties were better for HTDRB protein. Significant decrease in enthalpy (ΔH) for denaturation was observed for LTDRB protein as compared to HTDRB protein. Scanning electron microscopy analysis revealed that HTDRB protein was more compact than LTDRB protein. LTDRB protein had smaller particle size distribution than HTDRB. Study suggested that low temperature desolventization can result in higher protein extraction with better physico-chemical, structural, and functional properties of protein obtained from DRB.

2.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153305

RESUMO

Plant-based protein isolates and concentrates are nowadays becoming popular due to their nutritional, functional as well as religious concerns. Among plant proteins, oilseeds, a vital source of valuable proteins, are continuously being explored for producing protein isolates/concentrates. This article delineates the overview of conventional as well as novel methods for the extraction of protein and their potential impact on its hydration, surface properties, and rheological characteristics. Moreover, proteins undergo several modifications using physical, chemical, and biological techniques to enhance their functionality by altering their microstructure and physical performance. The modified proteins hold a pronounced scope in novel food formulations. An overview of these protein modification approaches and their effects on the functional properties of proteins have also been presented in this review.

3.
J Food Sci Technol ; 59(6): 2141-2149, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35602442

RESUMO

Peanut protein concentrates (PPCs) were subjected to hydrolysis by crude protease extract (CPE) obtained from three fungi viz; Rhizopus oligosporus, Trichoderma reesei, and Aspergillus oryzae and the effect on structural, functional and in-vitro protein digestibility (IVPD) properties were studied. Particle size was found significantly (p ≤ 0.05) lower in hydrolyzed samples than un-treated samples. Fourier transform infrared spectroscopy (FTIR) spectrum of hydrolyzed samples displayed intense absorbance peaks in the wavelength ranging from 1500 to 2600 cm-1. Peanut protein concentrates hydrolyzed by CPE from R. oligosporus showed higher surface hydrophobicity (564.18). Total sulfhydryl content was found lower in all the hydrolyzed samples whereas, reverse trend was observed for exposed sulfhydryl content. The structural changes simultaneously affected the functional and IVPD attributes of hydrolyzed PPCs. In comparison to the PPCs hydrolysed using crude extracts from T. reesei and R. oligosporus, PPCs hydrolysed by A, oryzae showed higher solubility, water and oil binding capacity, foaming capacity and foam stability. Higher IVPD values of 86.70% was also found in PPCs hydrolyzed with CPE of A. oryzae. The study established that CPE hydrolysis of PPCs has potential for scale-up studies and may serve as a cost effective alternative to protein hydrolysis with pure enzymes.

4.
ACS Appl Mater Interfaces ; 13(8): 9942-9954, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33606504

RESUMO

Surface decoration of metal oxides by metals for enhancing their electrocatalytic properties for organic conversions has attracted a lot of researchers' interest due to their high abundancy, inexpensiveness, and high stability. In the present work, a process for the synthesis of black gold (BG) using a citrate assisted chemical route and m-ZrO2 by a hydrothermal method at 200 °C has been developed. Further, different concentrations of black gold are being used to decorate the surface of zirconia by exploitation of surface potential of zirconia and gold surfaces. The catalyst having 6 mol % concentration of black gold shows excellent electrocatalytic activity for ethanol oxidation with low oxidation peak potential (1.17 V) and high peak current density (8.54 mA cm-2). The current density ratio (jf/jb) is also high (2.54) for this catalyst indicating its high tolerance toward poisoning by intermediate species generated during the catalytic cycle. The enhanced electrocatalytic activity can be attributed to the high tolerance of gold toward CO poisoning and high stability of the ZrO2 support. The black gold decorated zirconia catalyst showed enhanced activity during photoelectrochemical studies when the entire spectrum of light falls on the catalyst. Ultrafast transient studies demonstrated plasmonic excitation of metallic free electrons and subsequent charge separation in the black gold-ZrO2 heterointerface as the key factor for enhanced photoelectrocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...